Ada is a structured, statically typed, imperative, wide-spectrum, and object-oriented high-level computer programming language, extended from Pascal and other languages. It has built-in language support for design-by-contract, extremely strong typing, explicit concurrency, offering tasks, synchronous message passing, protected objects, and non-determinism. Ada aims to improve the safety and maintainability by leveraging the compiler to find compile-time errors in favor of runtime errors. Ada is an international standard; the current version (known as Ada 2012) is defined by ISO/IEC 8652:2012.

       Ada was originally designed by a team led by Jean Ichbiah of CII Honeywell Bull under contract to the United States Department of Defense (DoD) from 1977 to 1983 to supersede the hundreds of programming languages then used by the DoD. Ada was named after Ada Lovelace (1815–1852), who is credited as being the first computer programmer.

Ada was originally targeted at embedded and real-time systems. The Ada 95 revision, designed by S. Tucker Taft of Intermetrics between 1992 and 1995, improved support for systems, numerical, financial, and object-oriented programming (OOP).

Notable features of Ada include: strong typing, modularity mechanisms (packages), run-time checking, parallel processing (tasks, synchronous message passing, protected objects, and nondeterministic select statements), exception handling, and generics. Ada 95 added support for object-oriented programming, including dynamic dispatch.

The syntax of Ada minimizes choices of ways to perform basic operations, and prefers English keywords (such as "or else" and "and then") to symbols (such as "||" and "&&"). Ada uses the basic arithmetical operators "+", "-", "*", and "/", but avoids using other symbols. Code blocks are delimited by words such as "declare", "begin", and "end", whereas the "end" (in most cases) is followed by the identifier of the block it closes (e.g., if … end if, loop … end loop). In the case of conditional blocks this avoids a dangling else that could pair with the wrong nested if-expression in other languages like C or Java.

Ada is designed for development of very large software systems. Ada packages can be compiled separately. Ada package specifications (the package interface) can also be compiled separately without the implementation to check for consistency. This makes it possible to detect problems early during the design phase, before implementation starts.

A large number of compile-time checks are supported to help avoid bugs that would not be detectable until run-time in some other languages or would require explicit checks to be added to the source code. For example, the syntax requires explicitly named closing of blocks to prevent errors due to mismatched end tokens. The adherence to strong typing allows detection of many common software errors (wrong parameters, range violations, invalid references, mismatched types, etc.) either during compile-time, or otherwise during run-time. As concurrency is part of the language specification, the compiler can in some cases detect potential deadlocks. Compilers also commonly check for misspelled identifiers, visibility of packages, redundant declarations, etc. and can provide warnings and useful suggestions on how to fix the error.

Ada also supports run-time checks to protect against access to unallocated memory, buffer overflow errors, range violations, off-by-one errors, array access errors, and other detectable bugs. These checks can be disabled in the interest of runtime efficiency, but can often be compiled efficiently. It also includes facilities to help program verification. For these reasons, Ada is widely used in critical systems, where any anomaly might lead to very serious consequences, e.g., accidental death, injury or severe financial loss. Examples of systems where Ada is used include avionics, ATC, railways, banking, military and space technology.